A Behavior-based Adaptive Access-mode for Low-power Set-associative Caches in Embedded Systems

نویسندگان

  • Jiongyao Ye
  • Hongfeng Ding
  • Yingtao Hu
  • Takahiro Watanabe
چکیده

Modern embedded processors commonly use a set-associative scheme to reduce cache misses. However, a conventional set-associative cache has its drawbacks in terms of power consumption because it has to probe all ways to reduce the access time, although only the matched way is used. The energy spent in accessing the other ways is wasted, and the percentage of such energy will increase as cache associativity increases. Previous research, such as phased caches, way prediction caches and partial tag comparison, have been proposed to reduce the power consumption of set-associative caches by optimizing the cache access mode. However, these methods are not adaptable according to the program behavior because of using a single access mode throughout the program execution. In this paper, we propose a behavior-based adaptive access-mode for set-associative caches in embedded systems, which can dynamically adjust the access modes during the program execution. First, a program is divided into several phases based on the principle of program behavior repetition. Then, an off-system pre-analysis is used to exploit the optimal access mode for each phase so that each phase employs the different optimal access mode to meet the application’s demand during the program execution. Our proposed approach requires little hardware overhead and commits most workload to the software, so it is very effective for embedded processors. Simulation by using Spec 2000 shows that our proposed approach can reduce roughly 76.95% and 64.67% of power for an instruction cache and a data cache, respectively. At the same time, the performance degradation is less than 1%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Buffered Dual-Access-Mode Scheme Designed for Low-Power Highly-Associative Caches

This paper proposes a buffered dual-access-mode cache to reduce power consumption for highly-associative caches in modern embedded systems. The proposed scheme consists of a MRU (most recently used) buffer table and a single cache structure to implement two accessing modes, phased mode and way-prediction mode. The proposed scheme shows better access time and lower power consumption than two pop...

متن کامل

Dual-access way-prediction cache for embedded systems

Way-prediction (WP) caches have advantages of reducing power consumption and latency for highly associative data caches and thus are favorable for embedded systems. In this paper, we propose an enhanced way-prediction cache, dual-access way-prediction (DAWP) cache, to cope with the weakness of the WP cache. The prediction logic designed for the DAWP cache contains a scaled index table, a global...

متن کامل

An Access-mode Prediction Technique Based on Cache Hit and Miss Speculation for Cache Design Achieves Minimal Energy

The successful pursuit of high performance on computer systems has produced the negative by-product of high power dissipation. Circuit-level techniques alone can no longer keep power dissipation under a reasonable level. Researchers have made efforts to reduce power dissipation at the architectural level by producing such schemes as reducing on-chip cache power consumption—a major power consume...

متن کامل

Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control

This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...

متن کامل

Way Memoization to Reduce Fetch Energy in Instruction Caches

Instruction caches consume a large fraction of the total power in modern low-power microprocessors. In particular, set-associative caches, which are preferred because of lower miss rates, require greater access energy on hits than direct-mapped caches; this is because of the need to locate instructions in one of several ways. Way prediction has been proposed to reduce power dissipation in conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JIP

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2012